

 Rapport enl. Formas nr

INDUSTRY
PRACTICES FOR
APPLICATION OF
COCLASS IN
SOFTWARE

3

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

Table of contents

1 READING NOTES 5

2 IDENTIFIED NEEDS 5

2.1 NEEDS RELATED TO OBJECTS 5

2.2 STRUCTURED REQUIREMENTS 6

2.3 CREATE, CHANGE AND SEARCH INFORMATION 6

3 IDENTIFIED REQUIREMENTS 7

4 INFORMATION MODEL 8

4.1 ONTOLOGY AND TAXONOMY 8

4.2 INFORMATION INCLUDED 9

4.2.1 CLASSIFICATION INFORMATION 9

4.2.2 COMPOSITION STRUCTURES 11

4.2.3 REFERENCE DESIGNATIONS 12

4.2.4 PROPERTIES 14

4.3 INTERNATIONAL STANDARDS 14

4.4 VERSION CONTROL OF COCLASS 15

5 USAGE OF COCLASS IN SOFTWARE 15

5.1 GUIDELINES FOR IMPLEMENTING COCLASS 15

5.2 OTHER STANDARDS AND INDUSTRY PRACTICES 17

6 INTERACTION BETWEEN SOFTWARE 18

7 FUTURE DEVELOPMENT 18

7.1 VERIFICATION OF COCLASS INFORMATION 19

7.2 MODIFICATION OF COMPOSITION STRUCTURES 19

7.3 COCLASS API IMPROVEMENTS 19

7.4 URI 19

4

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

8 MAINTENANCE OF THE INDUSTRY PRACTICES 21

9 ANNEXES 22

5

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

1 Reading notes
This Industry practice is intended as a starting point for organizations

intending to implement CoClass in their respective software and processes.

Readers can range from developers of the built environment, planners,

consultants, and software developers responsible for implementing CoClass

in their software.

For information about the project, read the project report in Appendix 1 –

Report, Industry practices for application of CoClass in software.

For information on the Industry practice and how to implement CoClass in

software, read this document. For information on Svensk Byggtjänst’s

products CoClass Studio, the CoClass API and how to utilize them, read

Appendix 2 – CoClass Studio and API.

For a list of definitions used in these documents, read Appendix 3 –

Definitions.

2 Identified needs
Based on several workshops and interviews with identified stakeholders, a

number of needs and requirements were identified.

The identified needs can be categorized in the following:

• Needs related to objects

• Structured requirements

• Create, change and search information

For a detailed report on the identified needs, refer to Project Industry

practices for application of CoClass in software - AP1, 2019.

2.1 Needs related to objects
In digital representations of the world, objects of interest can be stored in

multiple forms: as geometry in CAD files, objects in files based on standards

such as IFC, as rows in a spreadsheet file, or as records in databases, just to

mention the most common forms. An “object” as discussed here is the

complete collection of digital data describing a real-world object of some

sort: a building, a road, a space, a construction element and so on. A popular

way of describing this collection of data is to call it a “digital twin”.

6

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

Depending on the user’s requirements, there is a strong need to connect

several types of information to objects. Classification according to CoClass

is only one of these.

Data can be packaged for different purposes into “property sets” with values

to objects and may be tracked over time. Beyond this, there is also a need to

connect indirect types of information to objects: documentation, images,

drawings, software etc. One option of doing this is by adding properties to

the object, referring to other data sources.

As a link between different data sources describing an object, a reference

designation can be used.

2.2 Structured requirements
The objects need to be connected together in a formalized structure that is

possible to communicate, between phases of the building process, between

different stakeholders and between different software applications.

There needs to be an unambiguous understanding of the different parts of

these structures, and a universal way to communicate this between all

participants in a project.

There is a strong need to streamline and unify the objects and information

types that are part of the building process.

2.3 Create, change and search information

Based on this there is a need to, in a united way, be able to create, change

and search several types of information. They can be summarized in the

following categories:

• Create

• Store

• Update

• Validate

• Search

• Calculate

• Combine

• Analyze

• Visualize

• Publish

• Merge

Many of these categories are dependent on version management of the

information related to applied CoClass classification.

7

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

3 Identified requirements
The figure below illustrates the role and aim of the requirements

specification.

- CoClass, i.e. the actual content and structure of CoClass that needs to

be accessed by users and applications

- The Web application and Web services (API) offered by Svensk

Byggtjänst for the distribution of the content of CoClass

- The Industry practices which is a deliverable from this project

- The Applications which offer functionality for end users during

various stages of the life cycle. The requirements are collected by the

participants of this project but should be expressed in a generic way

to be applicable for similar applications covering similar needs at

similar stages of the life cycle

CoClass

Web application
Web services (API)

DesignPlanning Construction
Maintenance
& Operations

Demolition

Industry practices

Applications

Figure 1 – A possible way of interacting with CoClass through the CoClass API

As mentioned, the actual set of requirements are listed separately. Even

though some duplicate requirements have been removed, there might still be

duplicate requirements which needs to be evaluated and resolved. However,

due to time restrictions, no combined prioritization and complete resolution

of potential duplicates has been performed. It is therefore recommended that

any future processing of these requirements considers this. It is also

recommended that certain guidelines are observed when prioritizing, within

8

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

subsequent work packages of this project or beyond. The following criteria

should result in higher prioritization:

- A requirement affects many applications or actors

- A requirement has a strong component of

interoperability/communication between applications and therefore is

interface-related.

Furthermore, all requirements under the category “CoClass development”

are forwarded to the CoClass maintenance process to be handled there, since

this project does not handle CoClass development.

For a detailed report on the identified requirements, refer to Project Industry

practices for application of CoClass in software – AP2, 2019.

4 Information model
In order to have a seamless experience with CoClass in multiple, different,

software environments, it is important to agree upon a common information

model, with clear rules and guidelines as how to classify information. This

section depicts the agreed upon guidelines that the project has worked out.

4.1 Ontology and taxonomy

Taxonomy is the practice and science of classification. Typically, a

taxonomy organizes concepts within a subject area into a hierarchical

structure of sets and subsets based on the essential properties defining a set

and separating a set from the other sets. Maybe the most widely known

example is the Linnaean taxonomy set up by Carl Linnaeus in his Systema

Naturae.

An ontology is a set of concepts and categories in a subject area or domain

that shows their properties and the relations between them (Oxford

Dictionary). A taxonomy may be viewed as a specific kind of ontology only

dealing with sets and subsets. Other kinds of ontologies are meronomies

(dealing with classification of the parts of a whole), and general ontologies

dealing with a set of concepts and categories in a subject area or domain that

shows their properties and the relations between them where relationships

may be of any kind and not only according to taxonomies, meronomies.

The CoClass classification system is essentially a taxonomy of classes for

the built environment. However, since CoClass builds on the ISO 12006-2

standard, a meronomy is also an essential characteristic of the system

through the whole-part relationships between Construction complexes,

https://en.wikipedia.org/wiki/Linnaean_taxonomy

9

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

Construction entities and Construction elements. Construction complexes

may be decomposed into Construction entities. Construction entities may be

decomposed into Construction elements. Furthermore, complex Construction

elements – systems – may be decomposed into their components.

4.2 Information included
Based on the information available in the CoClass system, the following

information aspects are covered:

• Classification information

• Composition structures

• Reference designations

• Property types

4.2.1 Classification information

The joint information model is based on the CoClass classification system.

The relationship between the classes is described by ISO 12006-2.

The schema below describes ISO 12006-2, which comprises the whole life

cycle. The upper part is about the physical results. The part below describes

the process, it ́s resources with products and goods, aids, actors and

information. Here we can also see the lifecycle processes: pre-design,

design, production, and maintenance. (Bold lines describe a “type-of”

relationship, thin lines describe other types of relationships.)

10

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

Figure 2 – description of the ISO 12006-2 schema

The information model can be simplified into a triangle, described below:

11

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

Figure 3 – The CoClass hierarchy for the built environment perspective

The fundamental information needed to describe an object is the CoClass

class, defining its inherent function as a Construction complex, a

Construction entity or a Construction element. The class code can thus be

viewed as the key to the function of the object.

4.2.2 Composition structures
Based on CoClass classes, properties and activities, structures describing a

complex object such as a Construction entity can be constructed. These are

built up as a hierarchy, where one object can contain other objects in a part-

of relationship, be associated with activities and characterized by properties.

An object can have many children, but only one parent.

12

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

Figure 4 – Example of a Composition structure built in CoClass Studio, For details, see Appendix 2 – CoClass Studio and API

An object can include properties and activities. This Industry practice covers

Classes, Properties, Activities and their values. The Properties are also

classified, and they are used to describe material and cultural aspects of the

object. Properties can also contain referrals to external documentation of

different kinds: drawings, product data sheets, images etc.

These Industry practices does not cover how these Composition structures

are to be composed. For implementation in software it is necessary that each

class, regardless of level, can stand on its own and be constructed as the user

sees fit. This means that the software does not need to limit the user on

which class should be possible to add to another class. However, it is

recommended that the software gives help and context to the user when

composing Composition structures.

4.2.3 Reference designations

These structures can also be used in Reference designations, identifying

occurrences of objects. Rules for Reference designations in CoClass is a

combination of recommendations in SS-EN 81346-1:2010 and SS-ISO

81346-12:2019. Example follows below.

To show which table is referred to, a table code can be used within angle

brackets, i.e. <BX>, or with colon after, i.e. BX:. It is recommended to use

colon in software applications. Table codes can be found on each table's

information page.

A prefix is used to show which aspect of the object that is described:

= Function What an object is intended to do or what it actually

does

- Product

(Assembly)

By which means an object does what it is intended

to do; with what parts the object is assembled

13

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

+ Placing Intended or actual placing of the object

++ Location Intended or actual location of the object

% Type Type of construction element within the same class

In order to differentiate between construction elements of different

complexity, the code for Functional systems has one letter, the code for

Constructive systems has two letters, and the code for Components has tree

letters.

An example is shown below:

Figure 5 – Reference designation

As an alternative to showing the type aspect, numbered types can be used in

the function or product aspect as shown below:

Figure 6 – Reference designation, numbered types

14

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

It should be possible to view information and objects from several different

aspects and perspectives, depending on the users needs.

4.2.4 Property types
There are a number of Properties in the Properties table that can be added to

each CoClass class in a Composition structure.

Properties in CoClass have a Swedish and English term, a code and a

recommended attribute tag. Example: Märkström, Nominal current, ELCN,

ccElectrCurrentNominal.

The code can be used for expressing property values in a text string. Values

are added after the code of the property. The values are surrounded by

parenthesis and separated by semicolon. Example: BV:AAA (ARTX:25;

ARVS:Yes) shows a BV:AAA Room with ARTX ccAirTemperatureMax of

25 and ARVS ccAirVentilatedByAirSupply set to Yes.

Unit and value type are defined for all properties. Possible value types are:

• Boolean

• String

• Integer

• Real number

• Value list

• Percent

It is recommended to not include Properties and their values in a Reference

designation if it is to be used as an identifier for the object.

4.3 International standards
CoClass is based on the following international standards:

• SS-ISO 12006-2:2015, Building construction – Organization of

information about construction works – Part 2: Framework for

classification

• IEC-EN 81346-1:2009 Industrial systems, installations and

equipment and industrial products – Structuring principles and

reference designations – Part 1: Basic rules

• IEC 81346-2:2019 Industrial systems, installations and equipment

and industrial products – Structuring principles and reference

designations – Part 2: Classification of objects and codes for classes

• ISO 81346-12:2018 Industrial systems, installations and equipment

and industrial products – Structuring principles and reference

designations – Part 12: Construction works and building services

15

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

The ISO 12006-2 standard defines a classification system for a built

environment, how you structure the built environment.

IEC 81346-1, IEC 81346-2 and IEC 81346-12 defines the Reference

designation, the classes for construction elements (components), and the

built space.

5 Usage of CoClass in
software

The basis of usage in software is the CoClass classification system, based on

table codes, class codes and their relationships, applied according to the rules

for Reference designations.

This industry practice does not specify which format to use when

communicating the information. However, the CoClass API uses JSON.

The documentation for the communication of classes, properties and other

objects is available at: https://developer.byggtjanst.io/docs/services/sb-

public-api-coclass-public

The documentation for the communication of Composition structures based

on classes, properties and other objects is available at:

https://developer.byggtjanst.io/docs/services/sb-public-api-coclass-public-

structure

5.1 Guidelines for implementing CoClass
Based on the work in this, and other, projects a number of guidelines on how

to implement CoClass in applications have been developed.

1. It shall be possible to transfer CoClass classification information

from one application in another.

When using CoClass codes, Reference designations and Composition

structures in an application, and objects are possible to export from

the application, the corresponding CoClass information shall be

exported together with it. If a Composition structure is possible to

export from an application, the corresponding CoClass codes and

Reference designations shall be exported together with them.

2. It shall be possible to verify the CoClass codes, the Reference

designations and the Composition structures.

In order to ensure that the CoClass information in the application is

possible to transfer to other applications, the verification shall ensure

that the codes, Reference designations and Composition structures

https://developer.byggtjanst.io/docs/services/sb-public-api-coclass-public
https://developer.byggtjanst.io/docs/services/sb-public-api-coclass-public
https://developer.byggtjanst.io/docs/services/sb-public-api-coclass-public-structure
https://developer.byggtjanst.io/docs/services/sb-public-api-coclass-public-structure

16

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

are valid according to the rules and guidelines set out in this

document and the corresponding standards that CoClass is based on.

3. When referring to CoClass codes and information, the corresponding

CoClass version shall be specified.

4. The language used when referencing CoClass and its content shall be

specified.

The CoClass classification is language independent, that is, the class

codes are the same for all languages. However, the information

contained in each CoClass object is available in Swedish and

English. The default language for CoClass is Swedish.

5. When presenting a CoClass code to a user, it shall always be

accompanied by its corresponding heading.

6. Information as to what CoClass codes are available based on the use

case in the application shall be presented, and if possible, which are

suitable to use at that time.

7. Relevant context information depending on the user’s use of the

application shall accompany the CoClass information that is

presented.

8. It shall be possible to switch between English and Swedish without

losing CoClass classification information.

5.2 Version control of CoClass
In implementing CoClass in software, it is important to include and handle

different versions of CoClass, since the meaning and content of codes

change based on the version of CoClass.

Updates to CoClass is handled with version control, in three severity levels:

Figure 7 – Overview of levels of versions in CoClass

17

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

1. Simpler matters (publishing takes place at most 11 times / year):

Minor linguistic corrections, adjustment of definitions, adjustment of

examples, additional or replacement of existing images, additional or

change of "Corresponding of" (refers to mapping to other standards).

2. Medium matters (publishing takes place at most 4 times / year, but in

consultation with Product Manager CoClass can be extended to a

maximum of 11 times / year): New and / or modified terms, new and

/ or canceled codes (including removal of codes).

3. Complex cases (publishing takes place at most 1 time / year):

Changes that affect one or more groups of codes and / or are deemed

to be time-consuming and / or need to be coordinated with the

publication of other products, depend on other activities and /

or requires IT development. These cases are, if possible, published in

connection with major annual releases, but in special cases may be

forced to be postponed in anticipation of the next AMA cycle, i.e. up

to three years.

Older versions of CoClass are accessible through the CoClass API and

CoClass Studio.

5.3 Other standards and industry practices
There are several Industry practices, standards, and formats that are relevant

for CoClass and its use in software. These include, but are not limited to:

• BIMTypeCode - http://www.bimstockholm.se/EN/typecode.html

• BIP codes - http://www.bipkoder.se/

• CityGML - https://www.opengeospatial.org/standards/citygml

• fi2xml - https://www.bimalliance.se/verktyg-och-

stoed/standarder/datamodell/fi2xml/

• IFC - https://www.iso.org/standard/51622.html

• InfraGML - https://www.opengeospatial.org/standards/infragml

• Lantmäteriets Nationella specifikationer

https://www.lantmateriet.se/sv/Om-Lantmateriet/Samverkan-med-

andra/lantmateriet---utvecklingsmyndighet-for-

samhallsbyggnadsprocessen/nationella-specifikationer/

It is proposed that this area be the focus of an additional project in the Smart

Built Environment program.

http://www.bimstockholm.se/EN/typecode.html
http://www.bipkoder.se/
https://www.opengeospatial.org/standards/citygml
https://www.bimalliance.se/verktyg-och-stoed/standarder/datamodell/fi2xml/
https://www.bimalliance.se/verktyg-och-stoed/standarder/datamodell/fi2xml/
https://www.iso.org/standard/51622.html
https://www.opengeospatial.org/standards/infragml
https://www.lantmateriet.se/sv/Om-Lantmateriet/Samverkan-med-andra/lantmateriet---utvecklingsmyndighet-for-samhallsbyggnadsprocessen/nationella-specifikationer/
https://www.lantmateriet.se/sv/Om-Lantmateriet/Samverkan-med-andra/lantmateriet---utvecklingsmyndighet-for-samhallsbyggnadsprocessen/nationella-specifikationer/
https://www.lantmateriet.se/sv/Om-Lantmateriet/Samverkan-med-andra/lantmateriet---utvecklingsmyndighet-for-samhallsbyggnadsprocessen/nationella-specifikationer/

18

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

6 Interaction between
software

Interaction between software should use the above principles in order to

ensure that information related to CoClass classification and structures is

communicated in a clear and unambiguous way. Interaction shall be

implemented by utilizing open standards when possible.

In order to access the latest version of the classification system and its

components, Svensk Byggtjänst provides IT services for CoClass Studio and

the CoClass API, located at https://coclass.byggtjanst.se/ and

https://developer.byggtjanst.io/ respectively.

There are several ways to interact with these services in software.

One way is to create a local copy of the classification system and use that

internally. Another is to have an interactive connection to the CoClass API.

The CoClass API will always contain the most updated version of CoClass.

An overview of Svensk Byggtjänst’s services and how to use them is

provided in Appendix 2 - CoClass Studio and API.

7 Future development
Based on these Industry practices, potential areas of future work have been

identified in order to facilitate the implementation and usage of CoClass in

software.

7.1 CoClass as a naming standard
The project believes that CoClass as it is now work very well as a

Classification standard.

However, there is a need to ensure that CoClass can be used as a naming

standard based on common principles.

It needs to be developed, defined and described what this means for

implementers of CoClass in software.

It needs to be described what implementers need to follow, and how this can

be done in a flexible way to meet different perspectives of the information.

The project proposes that the CoClass Management group initiates a

reference group that clarifies this.

https://coclass.byggtjanst.se/
https://developer.byggtjanst.io/

19

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

7.2 Verification of CoClass information
In order to ensure that CoClass Codes, Reference designations and

Composition structures are used in the same way from different applications,

the Industry practices proposes that this verification is possible to do via the

API that Svensk Byggtjänst provides.

This verification should be able to answer:

• If a specific CoClass code is valid, and give information relating to

that code

• If a specific Reference designation is valid, and what CoClass objects

it consists of

• If a specific reference designation is valid according to a specific

composition structure

• If a specific Composition structure is valid, and what CoClass objects

it consists of

7.3 Modification of Composition structures
In order to work seamlessly with CoClass information in more than one

application, there is a need to be able to not only retrieve a Composition

structure, but also to modify it.

A possible way to do this is to open up API calls for the modification of

structures stored in CoClass Studio and other applications.

There is also a need to be able to track changes in composition structures via

version control.

7.4 CoClass API Improvements
Based on the Proof-of-Concept implementations, and future work, further

improvements and feature additions to the CoClass API have and will be

found. It is crucial that these are prioritized with the help of relevant

stakeholders and implemented in future versions of the CoClass API.

In order to facilitate this, the Industry practices proposes that a reference

group for future development is established.

7.5 URI
The classes in CoClass are unique resources that needs to be identifiable in

an unambiguous way from other data sources. Currently, each class and table

is identified (or referenced) by a code which essentially is a string of (a few)

characters. This string of characters is not contextualized explicitly in the

way that the code by itself shows that it belongs to CoClass. The users

therefore need to know through other means that this is the case.

Furthermore, the code does not explicitly provide means for the user, or a

20

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

machine, to find more information about the concept in question. This

principle still works well in most situations. It is also well integrated with the

reference designations, described elsewhere in this document.

One way to address this issue was suggested by the VERA project.

According to this suggestion, each class and table in CoClass could be

referenced using resolvable internet URI:s, directly linking the

corresponding CoClass concept in both humanly- (e.g. html) and machine-

(e.g. JSON, XML, Turtle) readable form. A URI (Universal Resource

Identifier) is a string of characters that unambiguously identifies a particular

resource as specified by the W3C. Among the forms of URI:s, the URL

(Uniform Resource Locator) is probably the most well-known.

By using URI:s, CoClass may be easily and unambiguously referenced from

anywhere in a machine-interpretable fashion that also works on the world

wide web. It is worth noting that this would be an alternative to the use of

class codes that still may be a viable option for many users.

To achieve this, a URI strategy should be defined. To do this, it is

recommended to use the following W3C guidelines:

https://www.w3.org/TR/ld-bp/. For URI:s, the following recommendations

are made:

• Use HTTP URI:s

o To benefit from and increase the value of the World Wide

Web, governments and agencies should provide HTTP URIs

as identifiers for their resources. There are many benefits to

participating in the existing network of URIs, including

linking, caching, and indexing by search engines. As stated in

[howto-lodp], HTTP URIs enable people to "look-up" or

"dereference" a URI in order to access a representation of the

resource identified by that URI. To benefit from and increase

the value of the World Wide Web, data publishers should

provide URIs as identifiers for their resources.

• Provide at least one machine-readable representation of the resource

identified by the URI

o In order to enable HTTP URIs to be "dereferenced", data

publishers have to set up the necessary infrastructure

elements (e.g. TCP-based HTTP servers) to serve

representations of the resources they want to make available

(e.g. a human-readable HTML representation or a machine-

readable Turtle). A publisher may supply zero or more

representations of the resource identified by that URI.

However, there is a clear benefit to data users in providing at

https://www.w3.org/Addressing/URL/uri-spec.html
https://www.w3.org/
https://www.w3.org/TR/url/
https://www.w3.org/TR/ld-bp/
https://www.w3.org/TR/ld-bp/#bib-howto-lodp

21

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

least one machine-readable representation. More information

about serving different representations of a resource can be

found in [COOLURIS].

• A URI structure will not contain anything that could change

o It is good practice that URIs do not contain anything that

could easily change or that is expected to change like session

tokens or other state information. URIs should be stable and

reliable in order to maximize the possibilities of reuse that

Linked Data brings to users. There must be a balance

between making URIs readable and keeping them more stable

by removing descriptive information that will likely change.

For more information on this see Architecture of the World

Wide Web: URI Persistence

• URI opacity

o The Architecture of the World Wide Web [webarch], provides

best practices for the treatment of URIs at the time they are

resolved by a Web client: Agents making use of URIs should

not attempt to infer properties of the referenced resource.

URIs should be constructed in accordance with the guidance

provided in this document to ensure ease of use during

development and proper consideration to the guidelines given

herein. However, Web clients accessing such URIs should not

parse or otherwise read into the meaning of URIs.

8 Maintenance of the Industry
practices

This Industry practices proposes that Svensk Byggtjänst establish a reference

group for maintaining and developing these Industry practices. It is proposed

that the reference groups tasks should be:

• Maintaining and developing the Industry practices for application of

CoClass in software

• Proposing future improvements and changes to the CoClass API and

CoClass Studio application

It is proposed that the Chair for the reference group is Svensk Byggtjänst,

and that initially the group consists of representatives from the project that

has developed these Industry practices.

The Chair of the reference group is responsible for setting the timeline,

process and agenda for the reference groups work.

https://www.w3.org/TR/ld-bp/#bib-COOLURIS
http://www.w3.org/TR/webarch/#URI-persistence
http://www.w3.org/TR/webarch/#URI-persistence
https://www.w3.org/TR/ld-bp/#bib-webarch

22

INDUSTRY PRACTICES FOR APPLICATION OF COCLASS IN SOFTWARE

9 Annexes
Appendix 1 – Report, Industry practices for application of CoClass in

software

Appendix 2 – CoClass Studio and API

Appendix 3 – Definitions

Smart Built Environment c/o IQ Samhällsbyggnad │ Drottninggatan 33 │ 111 51 STOCKHOLM │ info@smartbuilt.se │ 070-645 16 40 │ www.smartbuilt.se

mailto:info@smartbuilt.se

	1 Reading notes
	2 Identified needs
	2.1 Needs related to objects
	2.2 Structured requirements
	2.3 Create, change and search information

	3 Identified requirements
	4 Information model
	4.1 Ontology and taxonomy
	4.2 Information included
	4.2.1 Classification information
	4.2.2 Composition structures
	4.2.3 Reference designations
	4.2.4 Property types

	4.3 International standards

	5 Usage of CoClass in software
	5.1 Guidelines for implementing CoClass
	5.2 Version control of CoClass
	5.3 Other standards and industry practices

	6 Interaction between software
	7 Future development
	7.1 CoClass as a naming standard
	7.2 Verification of CoClass information
	7.3 Modification of Composition structures
	7.4 CoClass API Improvements
	7.5 URI

	8 Maintenance of the Industry practices
	9 Annexes

